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SUMMARY

The paper presents results of discriminant anafgsiKraft's classes of trees. Kraft's
classification is based on a tree’s position in $kend’s social structure and its crown
development and extent. Belonging to a given sat#als reflects the position of a tree
in a stand, and through this, its growth potenfi&le aim of the analysis was to select
variables which mostly determined the Kraft clafa tree and to construct discriminant
functions which assign data well to Kraft's classes
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1. Introduction

There are many cases in which foresters clas&@strin the 1 century, Kraft

(1884) (in Assmann, 1961) created what would beconmof the most widely

used tree classifications. This classification asdxl on a tree’s position in the

stand’s social structure and its crown developragadt extent. Kraft recognized

the following classes of trees:

» predominant trees with exceptionally well-developeaivns

» dominant trees, forming the main stand as a rulth welatively well-
developed crowns

* low co-dominant trees; crown shape is still normatl hence the trees are
similar to those in the second tree class in thépect, yet they are relatively
weakly developed and restricted often already wighonset of degeneration

The classes-13 are called the dominant stand.
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» dominated trees, with crowns more or less dyindgpeestricted on all sides
or on two sides, or with one-sided development
e intermediate trees, essentially free of canopy ccowvih restricted
lateral crown growth
« partially overtopped crowns, the upper crown fries lower crown
under canopy cover
* entirely overtopped trees
* with crowns capable of growth
» with dead crowns
The classesb are called the suppressed stand. Belonging tivea gocial
class reflects the position of a tree in a stamd] #rough this, its growth
potential.

Figure 1. Kraft's classes (1884 in Assmann 1961)

The aim of the analysis is to choose the variablgish mostly determined
the Kraft's class of a tree (1, 2, 3, 4a, 4b, 58)l &0 construct discriminant
functions which assign data well to Kraft's class&mowledge about the
position of a tree in the forest may help draw d¢asions about the forest
management in the past and apply these to thesfutur
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In the past discriminant analysis has been appiiexhalyse measurements
on trees, but in another context. For example, Salbet al. (1994) carried out
research on the relationship between soil and glant Thailand's dry
dipterocarp forest. Wyanet al. (1986) studied the dependence between
the percentage of fire damage to crowns and theafitgrof trees in a Colorado
pine and fir forest. Reitberget al. (2008) used a discrimination method for
tree recognition on 3D full waveform LIDAR data finothe Bavarian Forest
National Park. Niche differences in four speciessalium were quantified by
using discriminant function analysis of site chéeastics including biotic
variables (Mann and Shugart 1984). Lewis and Ri®8@) estimated the risk of
erosion on forest lands. Discriminant analysis wssd to classify rain forest
types in Costa Rica (Thesslet al., 2008). Discriminant analysis, probit
analysis and logit analysis were compared for thediption of individual
overstory tree mortality in northern hardwood staidWisconsin (Monserud,
1976). Blackard and Dean (1999) applied discrintireamalysis in predicting
forest cover types from cartographic variables.eHhbis statistical methodology
is used to Kraft's classification of the trees.

2. Experimental material

The experimental material included selected redults200 pine-tree trunks

derived from 8 stands. All stands from which th@erimental test trees were
derived grew on the fresh mixed coniferous foréssssituated in the Zielonka
Experimental Forest District. Sample trees follovileel methodology developed
by Draudt. The same calendar growth period from91@81993 was adopted
for each tree. The purpose of this assumption wasile out the effect of

additional factors such as site, climate and metegy on the increment. Prior
to felling their social class was established adicy to the criteria proposed by
Kraft. In the presented study the following traitsre measured:

» age of sample treesl),

* tree heightlf) measured in m
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» 5-year increment in heighZkg) in m

* double bark thicknes¥J — measured in cm at a height of 1.3 m from theeba
of the tree

* breast height diameter inside batk) — its diameter measured in cm at the
height of 1.3 m from the base of the tree

» 5-year increment in breast height diamegk) in cm

- tree basal areag{s) in n? — the area of a circle with a diameter equal to
the breast height diameter

« 5-year basal area increme#ty) in nt

« tree volume Y), i.e. section-based volume in*nthe stem is divided into
sections of identical length (in this case 1 mhe volume of each complete
section is established as the volume of a cylindér diameter measured at
mid-length of a given section, while the volumeloé last incomplete section
is calculated using a formula for the volume of ane these calculated
volumes of individual sections are summed

» 5-year volume incremenZys)

* breast height form factof;(;) equal toV/(g, s*h)

» volume growth intensity coefficients] equal taZvs/ g; 3

* tree slendernesss)(defined as the ratio of height in m to breastghei
diameter in cm (hd, 5)

Most of the analysed traits were determined fanditeg trees, althoughhs,
V, Zvs, f1 3, 15 were measured on felled trees.

3. Statistical methods

The problem of classification arises when an ingaestr makes a number of
measurements on an individual and wishes to clatss#f individual into one of
a finite number of categories, but cannot do seatlly from the measurements.
For example when a tree has been felled and traiespto a sawmill it is
possible to measure some of the above variablesheut is no information
about the position of that tree in the stand satiaicture. We are interested in
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finding some linear functions of several number vafriables representing
the features measured on a individual tree whiehtlae best predictors of the
assignment to groups.

The method of discrimination analysis is widely adsed in Krzygko
(1990, 2000), Koronacki andwik (2005) and Anderson (2003) and in many
other books. The kind of analysis used in this papealescribed in the new
book by Krzyko at al. (2008). Information on the practical usé
STATISTICA is can be easily found in Stanisz (2007)

We take into consideration 13 variablesh, Zh, K, d; 3, Zgs, V, Zvs, 1 3, is,

s. A grouping variable ‘Kraft’ was adopted to dischivate the groups 1, 2, 3,
4a, 4b and 5a. The calculations were performedUSTATISTICA.

We let Y; =(Xjg,Xj2,....Xj;) be the random sample from tieh (i =
1, ...,,K) p-variate normally distributed population (Kraftgroup) from the set
{7,..., 7%} and ni+ nyt...+ ng=n. The maximum likelihood estimators of the
mean value of predictoyg and the variance-covariance matZxof 77has the
form (respectively)

- 1 1 — — .
X; :szij and S ZEZ(XH' = X)X = X;) -

From the whole training sampIeX=(Y1',Y2',...,Xn')' we calcu-

late  X=n"'Y nX;, the variance between sample’s matrix
B=Yn(X; -X)(X; -X) and the variance inter sample’s matrix
W = Z(ni _1)Si .

We are interested in finding the set of constastoms {g;: i=1,...,K} which
maximalizes the expressior{n-K)aBa/(K -1)a@Wa on condition that
(n- K)_la;Waj =9 wherea = (a/,....a’)" is @ matrix built on they's and
g; is a Kronecker’s delta (i.e. 1i#j and 0 ifi#). This criterion means that new
variables (discriminant functiong), = a’x are uncorrelated, with variances
equal to 1 for every.

The first discriminant functionu; is related to the first (i.e. the largest)
eigenvaluel; of the matrix(n-K)(K —1)_1W_1B, the second is related # ,
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and so forth. The vectogs are the eigenvectors related to #is, wherel; > A,
> ... =2 A > 0 are the solutions of the determinant equation
(B-(K-)(n-K)AW)a =0, fori =1,....s.

In order to make scales of prior variables equa,u;'s should be stan-
dardized in this mannew, = a,,(X;; = X,) + ...+ a,(%, —X,)for k= 1,....s.
The absolute values of the coefficierstg's divided by the ith root of the
diagonal element of(n—K)_lw show the contribution of prior variables
X1,... Xp to discrimination of groups by theth discriminant variable.

In the classification process a discriminant vddal is not useful ifAy is
not significantly different from zero (Krzko at al. 2008). First we test the
hypothesis that all eigenvalues are equal to Of thet they all are apart from
the first, etc. This procedure is continued urité first time the hypothesis is
not rejected. Then we state that from this valerdmaining (n-s) eigenvalues
are equal to 0. As the test statistic we apply Wilambda of the form

1
Nq =[gs1——— whered =0, 1, ...,p-1,
d |_||—d+11+/1i P
which has asymptotig?® distribution (more in Krz§ko, 1990, Koronacki and
Cwik, 2005, Krzyiko at al., 2008). Its values are shown in Tabl&d evaluate
the prior variable we use the partial Wilks’ lambassociated with the unique
contribution of the respective variable to the dimtnatory power of the model.

When we use the linear classifier (in LDA) then agsign observations to
the class k having the smallest value of the fancti

de () = Y3 [a (x-%)I? fork=1,2, ..K

whereX, is the vector of means for the k-th class. (Kkoyet al.,2008).

4. First results

At first, we include all variables and all casestia model (see Table 1). Wilks’
statistic called lambda is based on the clustedhgoints in p-dimensional
space around the centroid. Its value is in [0,X] @rdenotes the best power of
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discrimination. The partial lambda measures théuamice of the variable on
discrimination and is equal to the lambda statific all variables over the
lambda statistic for all but the one variable.

Table 1.Choice of variables for discriminant functions (gamandidates in bold)

Standardized Standardized

Var. C’: rlthf da LZ?;E?jla coeﬁiclzents for coefficients foru,  p-level R

1
w 0.092 0.893 -1,07755 -1,17180 0.00087  0.938
h 0.094 0.874 0,71741 -2,08813 0.00016  0.989
Zhg 0.085 0.964 0,39139 -0,12656 0.24656  0.844
K 0.085 0.970 0,04208 0,12650 0.35264  0.810
di 0.091 0.898 0,37484 4,17564 0.00143  0.998
Z0s 0.097 0.849 -0,08578 3,31982 0.00001  0.970
O3 0.090 0.912 1,53303 2,04069 0.00475  0.998
Zgs 0.092 0.892 -0,09533 -4,07365 0.00084  0.986
\Y 0.091 0.902 -0,09533 -3,02553 0.00205 0.994
Zvs 0.096 0.853 -0,77727 3,20533 0.00002 0.972
fis 0.090 0.915 0,06057 0,53291 0.00590 0.714
is 0.108 0.761 0,99521 -2,65707 0.00000 0.945
S 0.101 0.815 -0,77326 1,97743 0.00000  0.939

According to Krzgko i in. (2008) we should build our model on theibaof
all variables significant at the level 0.01 level b, diz, Z0s, 013 28, V, ZVs,
f1 3 is, S) Which contributes most (have largest absolutee/alf coefficients) in
the first discriminant functionw h, Zhs, digz , 1.3 2\, is, S) or in the second
one 0, dig Z0s, Zg, V, 2\, is). Obviously, it is not possible to take all three
variablesis, Zvs, g3, or all three of s h, dy 5, or all four off; 3 V, g5 hin the
same model because of the definitions of the gliesti

The quantity Rmeasures how much the variance of the groupirighlaris
explained by the variables in the model. Althouigld adding a new variable to
the model makes 2Fbigger, one should check if the new variable durelant,
i.e. duplicates the influence of another one inrttoelel.
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5. The choice of variables

We are interested in making the shortest list ofaldes included in the model
but with a great discriminatory power. Unfortungitehere are a lot of models
satisfying the above conditions. In order to firgk tbest of them the PCA
method will be applied (see Jolliffe, 1982). Wedfithe lines called factor axes
generated by a set of orthogonal eigenvectors efcihvariance matrixV
(Table 2). Only the three largest eigenvalues afatad (jointly) to the great
part of the total variation, so the projectiond 8fvariables on two-factor planes
(1x2) and (2x3) will show the importance and relas between them.

Table 2.The largest eigenvalues of the data covarianceixraaid the percentage

of total variance explained

Eigenvalue7.51 3.12 1.060.54 0.25 0.19
% 57.76 24.02 8.18 4.15 1.95 1.46

Figure 2 presents 13 variables as the end poirggyefivectors projected on
to the two-factor plane. With the exceptionfgf andK the remaining variables
are highly correlated with the factor axes, becahsg are located almost on
the unit circle. The uncorrelated pairs of variablare presented as the
orthogonal pairs of vectors. The poirths, s, w andZvs (or Zgs) lie on the
verticesof a square (see Figure 2). Variables located enstime diameter of
the circle are negatively correlated with the vakleand both should not be
entered in the same model. We get two mods]sv)(and Zhs, Zgs, w) which
are seemed to be adequate to the data. Additiohallys ortogonal to the
remain variables on (2x3)-plane in Figure 3f;smndis, (lying orthogonally to
f13) ought to be included in our model. The projectionthe (1x3)-plane looks
similarly to Figure 2, so is not presented here.

Let us consider two modelss, (v, f, 3, is) and ¢Zhs, Zgs, W, , f13,i5). The
eigenvalues of the first model are equal (approtetgato 3.162, 0.067, 0.026
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and lower, so it is appropriate to take one diseramt function because very
small eigenvalues have a negligible influence anglouping variable. To go
into detail thex? test rejected the second and subsequent functiensot
significant at the level 0.01 (Table 3). The fidsscriminant function is good
enough because of Wilks’ lambda value. The secomutlein has two
discriminant functions significant at the level D 3ee Table 4).

Table 3.Characteristics of discriminant functions in thedab(s,w, f; 3is)

Discriminant Eigenvalue Wilks’ 2 Degrees of Jevel
function 9 lambda X freedom P

1 3.162* 0.218 29531 20 0.000

2 0.067 0.908 1865 12 0.097

3 0.026 0.970 6.00 6 0.615

*-gsignificant at 0.01

Table 4.Characteristics of discriminant functions in model
(Zh5, Zg5, w, , f1.3, 19

Discriminant Eigenvalue Wilks’ 2 Degrees of Jevel
function 9 lambda X freedom P

1 1.876* 0.250 268.55 25 0.000

2 0.347* 0.718 64.16 16 0.000

3 0.028 0.967 6.45 9 0.694

*-significant at 0.01

In the first model the only one discriminant fuocti
u; = 0.1701961W + 0.732688s + 0.056777f, 3 +1.0637798

explains 97% of total variation (see the last rawable 5). The variablghas
the greatest influence on discriminant function because of the obtained
absolute value of standardized coefficients.

In the second model discriminant functions

u; = 0.44269%k + 0.274063} + 0.02264%, ; + 0.75882&hs + 0.865548& g5
U, = 2.19449k + 1.16317} - 0.37051f} 5+ 0.902172hs - 1.0423%2 g5

explain 83% and 15% of the total variation, respebt. The variableZg has
the greatest influence on discriminant functipnand the variables on u,.
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Table 5.Standardized coefficients of canonical variables

(sW, frais) (Zhs, Zgs, W, fi3,15)

Variable U, Up Uy

W 0.170196 0.442695 2.19449
I5 0.732688 0.274062 1.16317
fia 0.056777 0.022642 -0.37051
S 1.063779 - -
Zhs - 0.758828 0.90217
Z0s - 0.865548 -1.04235

Eigenvalue 3.162347 1.875704 0.34747
Cum. Prop. 0.969751 0.831097 0.98506

Obviously there are observations far from the @édtof its Kraft's group,
and so the classification cannot be done easilis iBhimplied by the fact that
some trees can change their class during thejiifiifer example the dominating
trees close to them die are dead or are felledadarof this (as one can see in
Figure 4) the transition from observations in aaiarclass to the next class is
continuous along a straight line parallel to thexds. This means that there is
no important difference between the type of clessf linear, quadratic or
elliptical discriminant functions will give the silar result. Therefore only
linear discriminant functions are considered.

In Figure 4 groups are placed along a straight, lmecause the second
discriminant function is negligible. In the secanddel, the groups in Figure 5
lie along a parabolic line. This means that thst filiscriminant function orders
the means for groups exactly according to their esawhereas the second
distinguish the extreme groups from those in the@ree as one can see from the
coefficients in Table 6.

Table 6. Means of canonical variables for Kraft's groups

Kraft's classes , in . Uy in . Uz in )
(s, w, f13is) (Zhs, Zgs, W, fi5i5) (Zhs, Zgs, W, 13 i5)
1 -2.53452 2.46925 -0.63631
2 -1.09142 0.65534 -0.01444
3 0.20682 -0.25359 0.67153
4a 1.66872 -1.41986 0.11239
4b 2.78263 -1.94038 -0.34888

5a 4.60742 -2.75888 -2.00517
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6. Results of classification

As we do not have a test sample (additional datigpendent from the learning
sample (the basis for constructing the discrimin&mctions) the cross-
validation procedure will be performed to verify iat of the two models is
better. Let us divide the sample into two partsl00 cases. 50% of every
Kraft's class data will create the learning samfeestimate parameters of
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amodel and the remains will be classified accardia that model. This

division was simulated 50 times at random. A pradassification probabilities

are proportional to group sizes and equal to 0.023%, 0.255, 0.16, 0.07 and
0.04, respectively. The effects of simulationsmesented in Tables 7 and 8.

Table 7. Average percentage of correct classification erttodel §, w, f; 3, is)

Kraft's Classified Classified Classified Classified Classified Classified

class as 1 as 2 as 3 as 4a as 4b as 5a
1 48.33 19.14 0.00 0.00 0.00 0.00
2 18.33 75.43 20.60 4.29 5.94 0.00
3 0.42 26.43 52.00 7.14 16.88 0.00
4a 0.00 1.86 26.00 20.71 41.88 14.00
4b 0.00 0.00 0.20 27.86 28.75 8.00
ba 0.00 0.00 0.00 16.43 0.31 56.00

Table 8. Average percentage of correct classification in thedel
(Zh5, Zg5, w, f1.3 ,i5)

Kraft's Classified Classified Classified Classified Classified Classified

class as 1 as 2 as 3 as 4a as 4b as 5a
1 55.42 15.71 1.40 0.00 0.00 0.00
2 35.42 60.29 27.80 5.00 14.69 0.00
3 0.00 19.14 60.0 12.14 17.50 3.00
4a 0.00 2.00 22.80 15.71 45.94 23.00
4b 0.00 0.00 4.60 25.00 19.38 20.00
ba 0.00 0.00 0.00 10.00 4.38 52.00

The model §, w, f; 5, is) is slightly better than the modelte, Zgs, w, fi 3, is).
Neither is good enough to distinguish classes 4b4énclasses, because there
are significantly less observations in 4b thanan Although the size of the last

(5a) is 10 (the least), this group is identifiablgh the use to identify with the
help of both models.

7. Conclusions
The percentage of dominating trees in the stanasgius the important

information about the productivity of that standov@usly the social position
of atree in the stand may naturally change owveetimore frequently in
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younger stands than in older ones. The discrimifianttions given in this
paper allow us to provide Kraft's classificatiomtiauously in time and choose
the best moment for removing trees. Although itgeaqs that we assing a tree
to a group in the neighbourhood of the proper d@nis,relatively rare that we
misclassify in a group, lying far from the true gpo
The considered models are equivalent in the sdraestmeasures the ratio of
height to breast height diameter at a certain monmetime, whereaghs and
Zgsmeasure 5-year increment in height and 5-year la@salincrement.

Knowing the four values (of, f; 5, is ands) for a tree we are able to assign
it to Kraft's classes properly with a probability laast 50% if we treat classes
4a and 4b as one we get 60.8% in the first model6&0% in the second one.
It can be done by calculating the value of the fiamcu; in model 6, w, f; 3, is).
The results of classification using the modéhs( Zgs, w, f, 3, is) are slightly
worse in the sense that we estimate one parameterand classify cases using
two discriminant functions, but the results areilsim

Though grouped according to just a very simplesdon &k(x) trees within
the same Kraft's class prove to be quite homogertasdar as many dendro-
metrical features are concerned), while there vigrgfeeant variation between
the classes. Each Kraft's class groups trees witltas growth potential.
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